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Over the past few years of investigation into potential ex-
ascale systems, there is growing consensus that an exascale
machine will have to incorporate in-system storage, a rad-
ical departure from current HPC architectures that relegate
storage to a separate network with limited connectivity to
compute resources. This architectural shift to include storage
on or near compute nodes is driven by concerns of memory
capacity and reliability at the exascale.

A many-core compute node will have significantly smaller
memory per core since the order of magnitude increase in
number of cores will not be accompanied by a commen-
surate increase in node memory due to constrained power
budget. Separately, it is expected that the failure rate will
increase with increased component count, making defensive
storage of state even more critical than in present-day
systems. However, the three orders of magnitude increase
in number of nodes will tax the I/O network to the point
of non-functionality if traditional checkpoint methods are
followed.

In-system storage encompassing 1018 tightly coupled
computing elements presents significant challenges to the
OS and runtime stack. Even at the level of a single node,
the OS file system management algorithms were designed
when the average access time to storage was measured
in milliseconds. High performance storage now has access
time measured in microseconds, which necessitates a re-
evaluation of the existing buffering and I/O coalescing
schemes. From the exascale perspective, there are many
additional unanswered questions regarding how the global
in-system storage resource should be managed.
• On a single node (assuming node local storage), should

the storage be organized as a POSIX file system, with
full OS VFS support? As a collection of block devices
managed by an application (library)? As a swap device?
As a hybrid between a ram disk and a true external
disk-like store?

• How should the OS/R present a node’s storage to other
nodes?

• Should node local storage be managed as a cache to
an external file system? If so, does that mean that all
node local data must be mirrored in the external file
system, or is there a need for multiple runtime libraries
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that manage application-specific caches, pushing only
a subset of data externally?

• What policies should the job management system im-
pose on in-system storage? Leave in place until explic-
itly deleted or for a maximum duration? Mark deleted
in the directory, but leave the data on the device? Erase
after every job chain?

Challenges addressed Among these many research issues
concerning in-system storage, we focus on a node local
view of the storage that extends the memory hierarchy to
incorporate low latency, random access NVRAM to hold
persistent data structures. We assume that in-system storage
will be in the form of NAND Flash, PCM, or hybrid arrays
attached to a low-latency network and will be used to store
and load persistent objects as if in memory (load/store rather
than read/write). Heroux [1] advocates this abstraction as
particularly valuable for local checkpoint/restart. We believe
the persistent memory will have many other use cases, such
as local re-play for steering of simulations, and to store
data structures used for in-situ data analysis. Efficient OS
support for memory-mapped access to persistent regions will
greatly ease the application development effort compared to
explicitly managing out-of-core state.

We advocate an advanced memory management runtime
within the node OS that optimizes access to the persis-
tent memory that is mapped into the application’s address
space. The key components to a high performance memory
management runtime are effective buffering of application
data, performance under memory pressure, and efficient use
of low latency, random access storage. The fundamental
insight to realize these goals is that (persistent) memory
management can no longer be limited to a single “generic”
use pattern, but must be optimized differently for different
applications’ behaviors.

It is no longer sufficient to assume that all data is
accessed uniformly and should be managed in a monolithic
buffer that grinds the system to a halt when the physical
memory fills up. It is necessary for the operating system
to understand that there are different tiers of user data and
that different buckets of data within these tiers should be
buffered and evicted differently. In this scenario, the OS/R
manages distinct persistent memory regions that have been
allocated by applications, and caches pages of regions into
DRAM caches that are distinct from the file system page



buffers. The alternative page caching mechanisms might be
invoked through user directives (eg. different policies for
different persistent regions) and/or automatically through
online profiling and adaptation.

A high performance memory management runtime has
the opportunity to address the following challenges: limited
main memory, high performance in-system storage, and
minimizing energy consumption. The combination of latency
tolerant, throughput-driven, massively parallel application
with efficient data movement in the operating system will
enable algorithmic data to reside in high performance storage
[2] with minimal loss in performance over all-memory.

Additionally, the storage stack in traditional operating
systems is optimized for sequential access to slow, rotating
media. NVRAM demands new algorithms that are tuned for
random access and low latency. Enabling effective use of
NVRAM allows systems to minimize energy consumed by
DRAM main memory. Furthermore, reducing inefficient data
movement between main memory and the storage hierarchy
lowers energy consumption.
Maturity Research into power and energy management is by
far the most mature although the use of persistent storage
to reduce main memory costs is still being proposed and
discussed.

Research into the effectiveness of NVRAM for data-
intensive computing is active and in progress. In the past
four years, there have been several efforts to study effective
methods for integrating NVRAM into the memory and/or the
storage hierarchy at a hardware level [3]. Flash-optimized
file systems and flash as cache to disk storage have also
been studied. Mnemosyne [4], Moneta [5], and PerMA [6],
have explored the impact of the operating system on the
efficacy of NVRAM.

One example of optimizing data-intensive applications for
latency tolerance and out-of-core execution is Pearce’s work
[7] with semi-external and external graph algorithms.
Uniqueness The need for efficient memory management
is pervasive throughout high-performance computing and
enterprise computing. Adding persistent memory in the form
of low latency, random access NVRAM into the memory
hierarchy of HPC compute nodes is more unique.
Novelty During the 1980s and 1990s there was a great deal
of research in the micro-kernel community about efficient
memory management and mechanisms allowing application
directed runtime tuning. While many of these ideas were
successful very few of them found fruit in macro-kernel
operating system, such as Linux. Furthermore the dramatic
growth in DRAM capacity diminished the impact of many
of these techniques. Now with the average DRAM capacity
per core declining and the availability of high-performance
NVRAM, there is a great opportunity to revisit many of
these ideas and explore their impact for exascale HPC and
data-intensive applications.
Applicability These techniques are broadly applicable

across high-performance computing and also to data-
intensive enterprise computing.
Effort To bring a high performance memory management
to fruition will require some in-depth research and a fair
bit of engineering. The research component is required to
identify what algorithms and adaptability will provide the
best performance for different application use cases. The
engineering component for integrating a high-performance
memory management runtime into an exascale operating
system will be fairly time consuming and intrusive. In
particular, for most macro-kernel operating system such as
Linux the memory management system is integrally tied
into the OS kernel. Therefore providing a suite of memory
management profiles, including reasonable default schemes
for different device drivers, file systems, and between ker-
nel/user space will require sustained effort.
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